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Modeling decisions under uncertainty

DQ terms: “outcomes” & *“rigor”

Th em eth Od Influence diagrams for combined predictive —value
dn d modeling

An example of
why predictions
go wrong

An example: “walk-in demand”

Demo: Solve it as an Influence diagram




Decisions happen at all Levels

~

Strategic: A C-level decision
to deploy a model.

J
~

Tactical: Update a dashboard
and respond.

J
~

Millions of automated 1 dollar
decisions /day
- can be more valuable than -
One multi-million dollar
decision

Automated: A machine
prediction drives an
automated business process.

J




= A decision makes a tangible change; an allocation that is
not revocable.

Prem |Se: = A rational decision aligns actions to maximize a measure
over outcomes

“Intelligence”

IS ® Qutcomes can be assigned values by which they can be

compared

Rational choice.

= Predictions are uncertainties over outcomes, expressed

by probability



Vodels

“Models to automate decisions”



Variables fall into one of three kinds

Outcome values

Conditional probabilities

Decisions, policies

* Influence Diagrams, aka
- Bayes Networks,
- Probabilistic Graphical Models
- Structural Equation Models
have three kinds of variables.

* Arcs show the influences among them
* Decision models, as one might draw out in

atree, can be formulated and solved by
Influence Diagrams

John Mark Agosta



Influence Diagrams are concise, causal, and computational
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The “walk-in” (e.g.
newsvendor)

problem

Decision: How much to under or over provision at any one
time.

Examples:
= How many hospital beds to have ready?
= How many perishable items to store?

= How many fast-food items to keep on hand?

How many live CSR staff to take calls?

How many network servers to provision?



The ‘“data”

Events

[ 1 T pr 0

Bins time

* People (walk-ins) arrive at random times.

e The number of walk-ins is binned for each time interval.

* The decision is to anticipate how many need to be served.



Probability model:
Learn predictor of
XfromY

= The history of walk-ins over time is
the data set from which to predict the
probability distribution of walkins.

=  Other predictor variables, not shown,
may also condition the prediction

P(Y | X):
Observed
walk-ins history
(training data)

P(X):
True, unobserved
distribution of walk-ins



Walk-in Probability Density
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Value MOdel E//C/t ® The asymmetric value

the tradeoﬁc fo r model expresses the costs
of wasted space versus
un d eran d over lost business in dollar
‘1 ; terms.
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Influence
Diagram:
Combined walk-in
model: Solve for

aly) d):

P(Y | X):

Observed
walk-ins history V(d, X)
(training data)

Asymmetric

Value function
= First, predict P(X) from the

training data

= Second, optimize the value
tradeoff P(X):
True, unobserved
Distribution of walk-ins



Cost of the outcome = probability * cost of each outcome.
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Demonstration



IELCGENENR

A combined predictive — value By not weighing errors a predictive
model is needed when the model alone gives the wrong answer.
prediction is intrinsically uncertain.




2-level
Hierarchical regression causal model
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