Influence Diagrams, A Universal Decision Modeling Tool

"Decision Intelligence confronts AI"

John Mark Agosta

10 Nov 2023

The method and An example of *why predictions go wrong*

- Modeling decisions under uncertainty
- DQ terms: "outcomes" & "rigor"
- Influence diagrams for combined predictive –value modeling
- An example: "walk-in demand"
- Demo: Solve it as an Influence diagram

Decisions happen at all Levels

Millions of automated 1 dollar decisions /day - can be more valuable than -One multi-million dollar decision Strategic: A C-level decision to deploy a model.

Tactical: Update a dashboard and respond.

Automated: A machine prediction drives an automated business process. Premise: "Intelligence" is Rational choice.

- A *decision* makes a tangible change; an allocation that is not revocable.
- A rational decision aligns actions to maximize a measure over outcomes
- Outcomes can be assigned values by which they can be compared
- Predictions are uncertainties over outcomes, expressed by probability

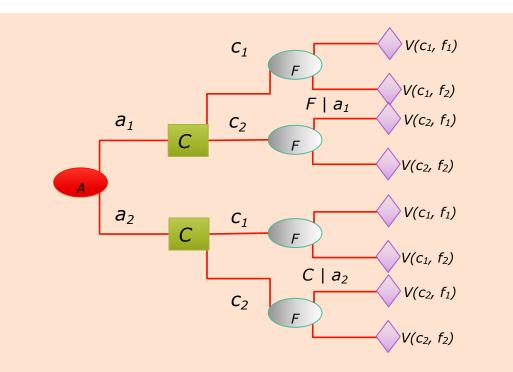
Models

"Models to automate decisions"

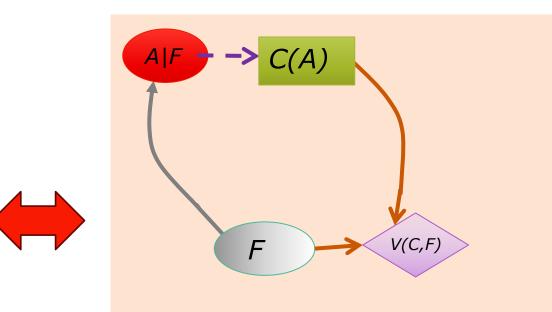
Variables fall into one of three kinds

John Mark Agosta

Influence Diagrams are concise, causal, and computational



Tree, With Decision and Outcomes



Equivalent Influence Diagram

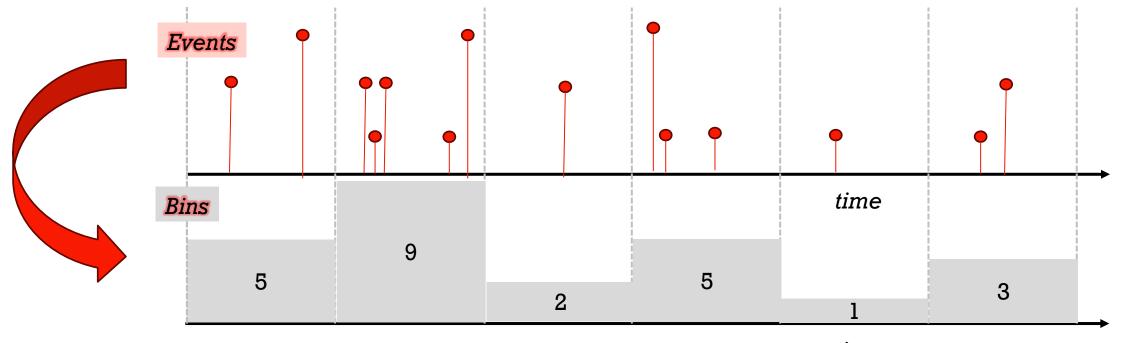
The "walk-in" (e.g. newsvendor) problem

Decision: *How much to under or over provision at any one time.*

Examples:

- How many hospital beds to have ready?
- How many perishable items to store?
- How many fast-food items to keep on hand?
- How many live CSR staff to take calls?
- How many network servers to provision?

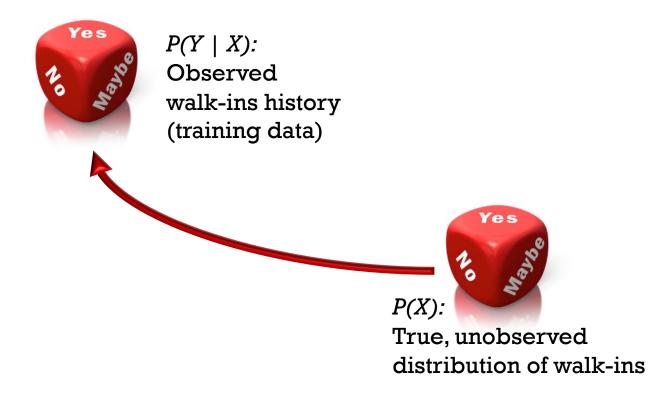
The "data"



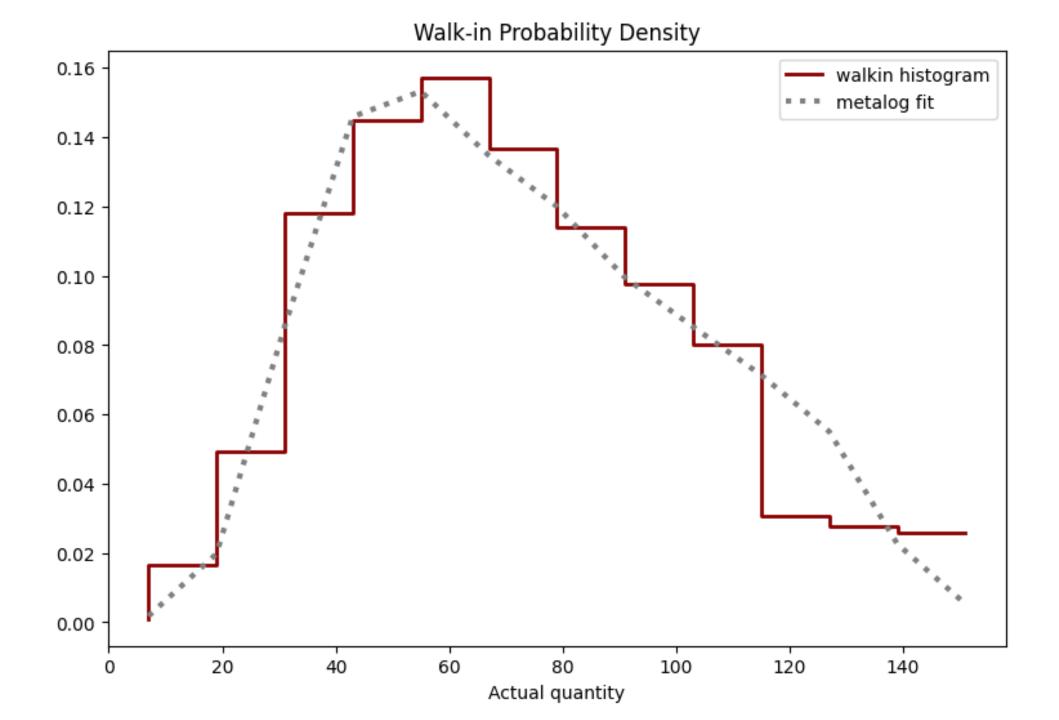
time

- People (walk-ins) arrive at random times.
- The number of walk-ins is **binned** for each time interval.
- The decision is to anticipate how many need to be served.

Probability model: Learn predictor of X from Y

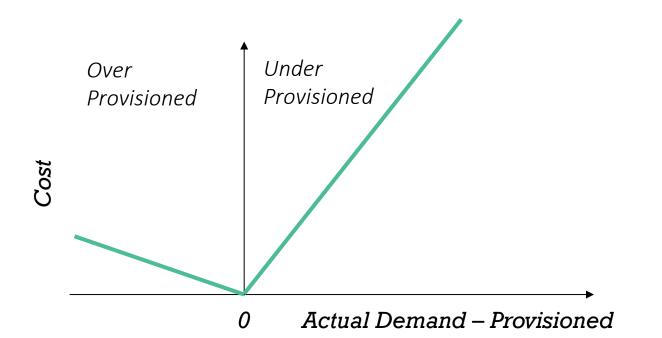


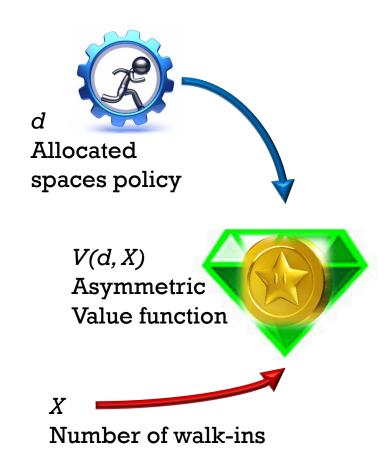
- The history of walk-ins over time is the data set from which to predict the probability distribution of walkins.
- Other predictor variables, not shown, may also condition the prediction



Value Model: Elicit the tradeoff for under and over provisioning

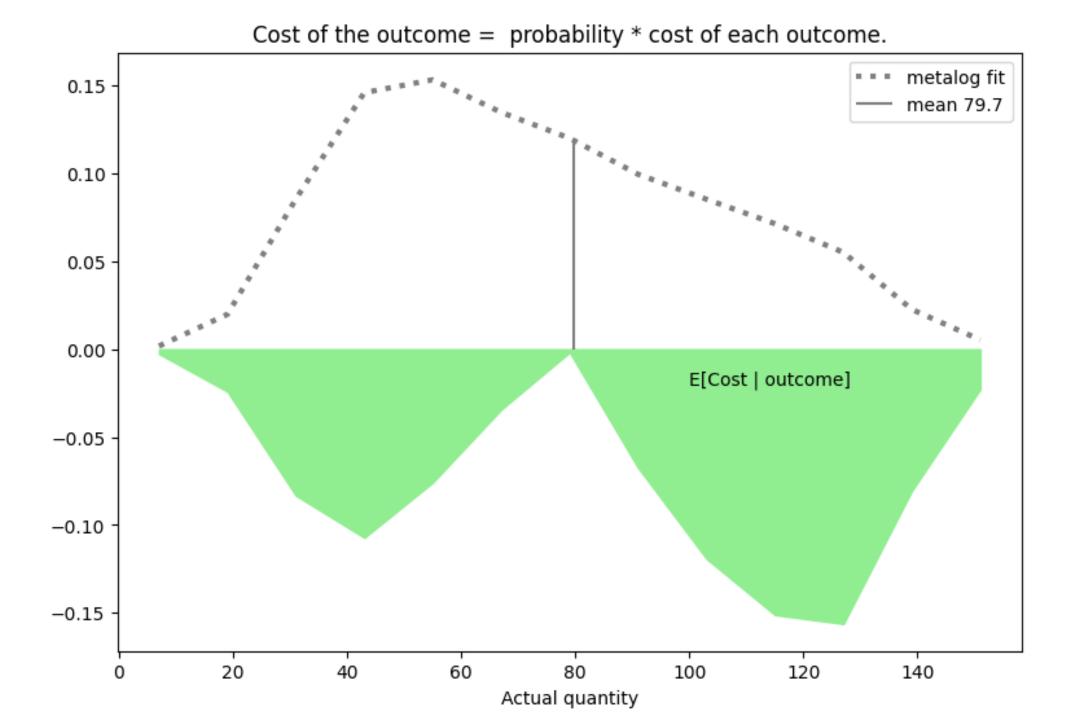
 The asymmetric value model expresses the costs of wasted space versus lost business in dollar terms.





Influence Diagram: Combined walk-in model: Solve for d(Y)d(Y): Allocated spaces policy Yes $P(Y \mid X)$: Observed walk-ins history V(d, X)(training data) Asymmetric Value function First, predict P(X) from the Yes training data Ague I Second, optimize the value *P(X):* tradeoff True, unobserved

Distribution of walk-ins



Demonstration

Takeaways

<u>T</u>

A combined predictive – value model is needed when the prediction is intrinsically uncertain. By not weighing errors a predictive model alone gives the wrong answer.

